
Chapter 2

Indexing Structures for Files

Adapted from the slides of “Fundamentals of Database Systems”

(Elmasri et al., 2011)

2

Chapter outline

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes in Oracle

Indexes as Access Paths

 A single-level index is an auxiliary file that
makes it more efficient to search for a record in
the data file.

 The index is usually specified on one field of the
file (although it could be specified on several
fields)

 One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

 The index is called an access path on the field.

3

Indexes as Access Paths (cont.)

 The index file usually occupies considerably less

disk blocks than the data file because its entries

are much smaller.

 A binary search on the index yields a pointer to

the file record.

 Indexes can also be characterized as dense or

sparse:

 A dense index has an index entry for every search key

value (and hence every record) in the data file.

 A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

4

5

Example 1: Given the following data file:

EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)

Suppose that:

record size R=150 bytes

block size B=512 bytes

r=30000 records

SSN Field size VSSN=9 bytes, record pointer size PR=7 bytes

Then, we get:

blocking factor: bfr= B/R = 512/150 = 3 records/block

number of blocks needed for the file: b= r/bfr= 30000/3  = 10000 blocks

For an dense index on the SSN field:

index entry size: RI=(VSSN+ PR)=(9+7)=16 bytes

index blocking factor bfrI= B/RI = 512/16 = 32 entries/block

number of blocks for index file: bi= r/bfrI= (30000/32)= 938 blocks

binary search needs log2bi  + 1 = log2938  + 1 = 11 block accesses

This is compared to an average linear search cost of:

(b/2)= 10000/2 = 5000 block accesses

If the file records are ordered, the binary search cost would be:

 log2b  =  log210000  = 13 block accesses

Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

6

7

 Defined on an ordered data file.

 The data file is ordered on a key field.

 One index entry for each block in the data file

 First record in the block, which is called the block anchor

 A similar scheme can use the last record in a block.

Primary Index

ID Name DoB Salary Sex

1

2

3

4

6

7

8

9

10

12

13

15

8

Primary

key value

Block

pointer

1

4

8

12

Primary key field

Index file

(<K(i), P(i)> entries)

9

 Number of index entries?

 Number of blocks in data file.

 Dense or Nondense?

 Nondense

 Search/ Insert/ Update/ Delete?

Primary Index

10

 Defined on an ordered data file.

 The data file is ordered on a non-key field.

 One index entry each distinct value of the field.

 The index entry points to the first data block that

contains records with that field value

Clustering Index

Dept_No Name DoB Salary Sex

1

1

2

2

2

2

2

3

3

4

4

5

11

Clustering

field value

Block

pointer

1

2

3

4

5

Clustering field

Index file

(<K(i), P(i)> entries)

Dept_No Name DoB Salary Sex

1

1

2

2

2

2

2

3

3

4

4

5

12

Clustering

field value

Block

pointer

1

2

3

4

5

Clustering field

Index file

(<K(i), P(i)> entries)

13

 Number of index entries?

 Number of distinct indexing field values in data file.

 Dense or Nondense?

 Nondense

 Search/ Insert/ Update/ Delete?

 At most one primary index or one clustering

index but not both.

Clustering Index

14

 A secondary index provides a secondary means of

accessing a file.

 The data file is unordered on indexing field.

 Indexing field:

 secondary key (unique value)

 nonkey (duplicate values)

 The index is an ordered file with two fields:
 The first field: indexing field.

 The second field: block pointer or record pointer.

 There can be many secondary indexes for the same file.

Secondary index

5

13

8

6

15

3

9

21

11

4

23

18

15

Index field

value

Block

pointer

3

4

5

6

8

9

11

13

15

18

21

23

Secondary

key field

Index file

(<K(i), P(i)> entries)

…

Secondary index on key field

Secondary index on key field

 Number of index entries?

 Number of record in data file

 Dense or Nondense?

 Dense

 Search/ Insert/ Update/ Delete?

16

Secondary index on non-key field

 Discussion: Structure of Secondary index on non-

key field?

 Option 1: include duplicate index entries with the

same K(i) value - one for each record.

 Option 2: keep a list of pointers <P(i, 1), ..., P(i, k)>

in the index entry for K(i).

 Option 3:

 more commonly used.

 one entry for each distinct index field value + an extra

level of indirection to handle the multiple pointers.

17

 Secondary

Index on

non-key

field:

option 3

18

Secondary index on nonkey field

 Number of index entries?

 Number of records in data file

 Number of distinct index field values

 Dense or Nondense?

 Dense/ nondense

 Search/ Insert/ Update/ Delete?

19

Summary of Single-level indexes

 Ordered file on indexing field?

 Primary index

 Clustering index

 Indexing field is Key?

 Primary index

 Secondary index

 Indexing field is not Key?

 Clustering index

 Secondary index

20

Summary of Single-level indexes

 Dense index?

 Secondary index

 Nondense index?

 Primary index

 Clustering index

 Secondary index

21

Summary of Single-level indexes

22

23

Chapter outline

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes in Oracle

24

 Because a single-level index is an ordered file, we

can create a primary index to the index itself.

 The original index file is called the first-level index and the

index to the index is called the second-level index.

 We can repeat the process, creating a third, fourth,

..., top level until all entries of the top level fit in

one disk block.

 A multi-level index can be created for any type of

first-level index (primary, secondary, clustering) as

long as the first-level index consists of more than

one disk block.

Multi-Level Indexes

25

A two-level primary

index resembling

ISAM (Indexed

Sequential Access

Method)

organization.

26

Multi-Level Indexes

 Such a multi-level index is a form of search

tree.

 However, insertion and deletion of new index

entries is a severe problem because every

level of the index is an ordered file.

A Node in a Search Tree with

Pointers to Subtrees below It

27

A search tree of order p = 3

28

29

Chapter outline

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes in Oracle

30

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees

 Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion
problem.
 This leaves space in each tree node (disk block) to allow

for new index entries

 These data structures are variations of search trees
that allow efficient insertion and deletion of new
search values.

 In B-Tree and B+-Tree data structures, each node
corresponds to a disk block.

 Each node is kept between half-full and completely
full.

31

Dynamic Multilevel Indexes Using B-

Trees and B+-Trees (cont.)

 An insertion into a node that is not full is quite

efficient.

 If a node is full, the insertion causes a split into

two nodes.

 Splitting may propagate to other tree levels.

 A deletion is quite efficient if a node does not

become less than half full.

 If a deletion causes a node to become less than

half full, it must be merged with neighboring

nodes.

32

Difference between B-tree and B+-tree

 In a B-Tree, pointers to data records exist at

all levels of the tree.

 In a B+-Tree, all pointers to data records exist

at the leaf-level nodes.

 A B+-Tree can have less levels (or higher

capacity of search values) than the

corresponding B-tree.

B-tree Structures

33

The Nodes of a B+-Tree

34

The Nodes of a B+-Tree (cont.)

 A B+-Tree of order p and 𝑝𝑙𝑒𝑎𝑓:

 Each internal node:

 Has at most p tree pointers.

 Except the root, has at least (𝑝 2) tree pointer.

 An Internal node with q pointers , q ≤ p, has q – 1

search values.

 Each leaf node:

 Has at most 𝑝𝑙𝑒𝑎𝑓 data pointers.

 has at least (
𝑝𝑙𝑒𝑎𝑓

2)

35

36

EXAMPLE 2: Suppose the search field is V = 9 bytes long,

the disk block size is B = 512 bytes, a record (data) pointer

is Pt = 7 bytes, and a block pointer is P = 6 bytes. Each B-

tree node can have at most p tree pointers, p – 1 data

pointers, and p – 1 search key field values. These must fit

into a single disk block if each B-tree node is to correspond

to a disk block. Hence, we must have:

(p*P) + ((p-1)*(Pt+V))  B

(p*6) + ((p-1)*(7+9))  512

(22*p)  528

We can choose to be a large value that satisfies the above

inequality, which gives p = 23 (p = 24 is not chosen

because of additional information).

36

37

EXAMPLE 3: Suppose that search field of Example 2 is a non-ordering key

field, and we construct a B-Tree on this field. Assume that each node of the

B-tree is 69 percent full. Each node, on the average, will have:

p * 0.69 = 23 * 0.69

Or approximately 16 pointers and, hence, 15 search key field values. The

average fan-out fo = 16. We can start at the root and see how many values

and pointers can exist, on the average, at each subsequent level:

Level Nodes Index entries Pointers

Root: 1 node 15 entries 16 pointers

Level 1: 16 nodes 240 entries 256 pointers

Level 2: 256 nodes 3840 entries 4096 pointers

Level 3: 4096 nodes 61,440 entries

At each level, we calculated the number of entries by multiplying the total

number of pointers at the previous level by 15, the average number of

entries in each node. Hence, for the given block size, pointer size, and

search key field size, a two-level B-tree holds 3840+240+15=4095 entries

on the average; a three-level B-tree holds 65,535 entries on the average.

3723*0.69 = 15.87 ≈ 16

38

 EXAMPLE 4: Calculate the order of a B+-tree.

 Suppose that the search key field is V=9 bytes long, the block size is

B=512bytes, a record pointer is Pr=7bytes, and a block pointer is

P=6bytes, as in Example 3. An internal node of the B+-tree can have

up to p tree pointers and p-1 search field values; these must fit into a

single block. Hence, we have:

(p*P) + ((p-1)*V)  B

 (p*6) + ((p-1)*9)  512

 15*p  512

 We can choose p to be the largest value satisfying the above

inequality, which give p = 34.

 This is larger than the value of 23 for the B-Tree, resulting in a larger

fan-out and more entries in each internal node of a B+-Tree than in the

corresponding B-Tree.

38

EXAMPLE 4 (cont.)

 The leaf nodes of B+-tree will have the same number of

values and pointers, except that the pointers are data

pointers and a next pointer. Hence, the order pleaf for the

leaf nodes can be calculated as follows:

(pleaf * (Pt+V))+P  B

 (pleaf * (7+9))+6  512

 (16 * pleaf)  506

 If follows that each leaf node hold up to pleaf = 31 key

value/data pointer combinations, assuming that the data

pointers are record pointers.

39

40

 EXAMPLE 5: Suppose that we construct a B+-Tree on the field of

Example 4. To calculate that approximate number of entries of the B+-

Tree, we assume that each node is 69 percent full. On the average,

each internal node will be have 34*0.69 ≈ 23.46 or approximately 23

pointers, and hence 22 values. Each leaf node, on the average, will

hold 0.69*pleaf = 0.69*31 ≈ 21.39 or approximately 21 data record

pointers. A B+-tree will have the following average number of entries

at each level:

Level Nodes Index entries Pointers

Root 1 nodes 22 entries 23 pointers

Level 1 23 23*22 = 506 232=529 pointers

Level 2 529 529*22 = 11,638 233=12,167 pointers

Leaf level12,167 12,167 *21 = 255,507

 For the block size, pointer size, and search field size given above, a

three-level B+-tree holds up to 255,507 record pointers, on the

average. Compare this to the 65,535 entries for the corresponding B-

tree in Example 3.

40

B+-Tree: Insert entry

 Insert new entry at leaf node.

 If leaf node is full: overflows and must be split.

 Create a new node.

 The first 𝑗 = ((𝑝𝑙𝑒𝑎𝑓 + 1)/2) entries are kept in the

original node.

 The remaining entries are moved to the new node.

 The jth search value is replicated in the parent internal

node in the correct sequence.

 An extra pointer to the new node is created in the

parent.

41

B+-Tree: Insert entry (cont.)

 If the parent internal node is full: overflow and

must be split.

 The jth (𝑗 = ((𝑝 + 1)/2)) search value is move to the

parent.

 The first j – 1 entries are kept.

 The remaining entries (from j+1 to the end) is hold in a

new internal node.

 This splitting can propagate all the way to create

a new root node

 new level for the B+-tree

42

Example of insertion in B+-tree

p = 3 and pleaf = 2

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

43

Example of insertion in B+-tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

44

p = 3 and pleaf = 2

Example of insertion in B+-tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

45

p = 3 and pleaf = 2

Example of insertion in B+-tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

46

p = 3 and pleaf = 2

Example of insertion in B+-tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

47

p = 3 and pleaf = 2

Example of insertion in B+-tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

48

p = 3 and pleaf = 2

Example of insertion in B+-tree (cont.)

Insertion Sequence: 8, 5, 1, 7, 3, 12, 9, 6

49

p = 3 and pleaf = 2

B+-Tree: Delete entry
 Remove the entry from the leaf node.

 If it happens to occur in an internal node:

 Remove.

 The value to its left in the leaf node must replace it in the internal

node.

 Deletion may cause underflow in leaf node:

 Try to find a sibling leaf node – a leaf node directly to the left or to

the right of the node with underflow.

 Redistribute the entries among the node and its siblings.

(Common method: The left sibling first and the right sibling later)

 If redistribution fails, the node is merged with its sibling.

 If merge occurred, must delete entry (pointing to node and

sibling) from parent node.

50

B+-Tree: Delete entry (cont.)

 If an internal node is underflow:

 Redistribute the entries among the node, its siblings and

entry pointing to node and sibling of parent node .

 If redistribution fails, the node is merged with its sibling and

the entry pointing to node and sibling of parent node .

 If merge occurred, must delete entry pointing to node and

sibling from parent node.

 If the root node is empty  the merged node becomes the

new root node.

 Merge could propagate to root, reduce the tree

levels.

51

Example of deletion from B+-tree.

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

Delete 5

52

Example of deletion from B+-tree (cont.)

Delete 12: underflow
(redistribute)

P = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

53

Example of deletion from B+-tree (cont.)

Delete 9:
Underflow (merge with left, redistribute)

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

54

Example of deletion from B+-tree (cont.)

p = 3 and pleaf = 2.

Deletion sequence: 5, 12, 9

55

Notes & Suggestions

 [1], chapter 18:

 Index on Multiple Keys

 Other Types of Indexes

 Search, Insertion and Deletion with B-Trees.

56

57

Chapter outline

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes in Oracle

Types of Indexes

 B-tree indexes: standard index type

 Index-organized tables: the data is itself the index.

 Reverse key indexes: the bytes of the index key are

reversed. For example, 103 is stored as 301. The

reversal of bytes spreads out inserts into the index

over many blocks.

 Descending indexes: This type of index stores data on

a particular column or columns in descending order.

 B-tree cluster indexes: is used to index a table cluster

key. Instead of pointing to a row, the key points to the

block that contains rows related to the cluster key.

58

Types of Indexes (cont.)

 Bitmap and bitmap join indexes: an index entry uses

a bitmap to point to multiple rows. A bitmap join

index is a bitmap index for the join of two or

more tables.

 Function-based indexes:

 Includes columns that are either transformed by a

function, such as the UPPER function, or included in

an expression.

 B-tree or bitmap indexes can be function-based.

 Application domain indexes: customized index

specific to an application.

59

Creating Indexes

 Simple create index syntax:

CREATE [UNIQUE | BITMAP] INDEX

[schema.] <index_name>

ON [schema.] <table_name> (column [ASC |

DESC] [, column [ASC | DESC]] ...)

[REVERSE];

60

Example of creating indexes

 CREATE INDEX ord_customer_ix ON ORDERS

(customer_id);

 CREATE INDEX emp_name_dpt_ix ON

HR.EMPLOYEES(last_name ASC, department_id

DESC);

 CREATE BITMAP INDEX emp_gender_idx

ON EMPLOYEES (Sex);

 CREATE BITMAP INDEX emp_bm_idx

ON EMPLOYEES (JOBS.job_title)

FROM EMPLOYEES, JOBS

WHERE EMPLOYEES.job_id = JOBS.job_id;

61

Example of creating indexes (cont.)
Function-Based Indexes:

 CREATE INDEX emp_fname_uppercase_idx

ON EMPLOYEES (UPPER(first_name));

 SELECT First_name, Lname

FROM Employee WHERE UPPER(Lname)= “SMITH”;

 CREATE INDEX emp_total_sal_idx

ON EMPLOYEES (salary + (salary *

commission_pct));

 SELECT First_name, Lname

FROM Employee

WHERE ((Salary*Commission_pct) + Salary)

> 15000;

62

Guidelines for creating indexes

 Primary and unique keys automatically have

indexes, but you might want to create an index on a

foreign key.

 Create an index on any column that the query uses

to join tables.

 Create an index on any column from which you

search for particular values on a regular basis.

 Create an index on columns that are commonly

used in ORDER BY clauses.

 Ensure that the disk and update maintenance

overhead an index introduces will not be too high.

63

64

Summary

 Types of Single-level Ordered Indexes

 Primary Indexes

 Clustering Indexes

 Secondary Indexes

 Multilevel Indexes

 Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

 Indexes in Oracle

Review questions
1) Define the following terms: indexing field, primary key field, clustering

field, secondary key field, block anchor, dense index, and nondense

(sparse) index.

2) What are the differences among primary, secondary, and clustering

indexes? How do these differences affect the ways in which these

indexes are implemented? Which of the indexes are dense, and which

are not?

3) Why can we have at most one primary or clustering index on a file, but

several secondary indexes?

4) How does multilevel indexing improve the efficiency of searching an

index file?

5) What is the order p of a B-tree? Describe the structure of B-tree nodes.

6) What is the order p of a B+-tree? Describe the structure of both internal

and leaf nodes of a B+-tree.

7) How does a B-tree differ from a B+-tree? Why is a B+-tree usually

preferred as an access structure to a data file?

65

